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ABSTRACT

We consider a class of "generalized equations," involving point-to-set
mappings, which formulate the problems of linear and nonlinear programming
and of complementarity, among others. Solution sets of such generalized equa-
tions are shown to be stable under certain hypotheses; in particular a general
form of the implicit function theorem is proved for such problems. An appli-
cation to linear generalized equations is given at the end of the paper; this
covers linear and convex quadratic programming and the positive semidefinite
linear complementarity problem. The general nonlinear programming problem is

treated in Part II of the paper, using the methods developed here.

AMS (MOS) Subject Classifications: 47H05, 90Al15, 90C30.

Key Words: Variational inequalities, Generalized equations, Monotone operators,
Nonlinear complementarity problem, Nonlinear programming, Economic
equilibria.

Work Unit Number 5 - Mathematical Prooramming and Operations Research.

DO
D [P np

FEB 2 1978

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by
the National Science Foundation under Grant No. MCS74-20584 A02.

I PESRRHI




SIGNIFICANCE AND EXPLANATION

Linear, quadratic and nonlinear optimization problems occur in manage-
ment science, in engineering and in other areas. One of the important questions
that arise about such problems is that of stability: if we solve such a problem
with slightly perturbed data, will the solution that we find be close to a
solution of the original problem? Note that we say "a" solution, not "the"

solution,since there may be more than one.

In this two-part paper we show that this property of stability holds,
under specified conditions, for classes of optimization problems commonly found
in applications. The results are also applicable to more general situations,

such as complementarity problems and economic equilibria.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




GENERALIZED EQUATIONS AND THEIR SOLUTIONS,

PART I: BASIC THEORY

Stephen M. Robinson

1. Introduction. 1In this paper we shall study the behavior of solutions of the

generalized equation

0 ¢ £éx) + T(x} (1.1)
where f is a continuously Frechet differentiable function from an open set Rn

3 n : J ; :
into R and T 1is a maximal monotone operator from R"  into itself (recall that an

operator T is monotone if for each (xl,wl), (x2,w2) in araph T one has

(x1 - Xy wl - wz) 20

. where (+,*) denotes the inner product, and maximal monotone if its graph is not
properly contained in that of any other monotone operator). We use the term "generalized

. equation" because if T 1is identically zero then (1.1) reduces to the equation f(x) = 0,
and because systems like (l1.1) retain some of the analytic properties of nonlinear equa-
tions, as we shall show in what follows.

We shall be particularly interested in conditions which, when imposed on f and T,

will ensure that the set of solutions to (1.1) remains nonempty and is well behaved (in a
sense to be defined) when f is subjected to small perturbations. To introduce these per-
turbations, we shall make use of a topological space P and a function f : P x + Rn,

so that we can replace (1.1) by

0 ¢ £(p,x) + T(x) , (1.2)
and study the set of x which solve (1.2) as p varies near a base value po.
A particular case of (1.2) of special interest for applications is that in which T
is taken to be the operator 3wc, where for a closed convex set C ¢ !ﬁ one defines the

indicator function WC of T by
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and where 3 denotes the subdifferential operator (13, §23]. This yields the special
generalized equation

0 ¢ f(p,x) + awc(x) ' (3:3)

which expresses analytically the geometric idea that f(p,x) 1is an inward normal to C
at  x.

Many problems from mathematical programming, complementarity, mathematical economics
and other fields can be represented in the form (1.3): for example, the nonlinear comple-

mentarity problem

*
F(x) € K
R ER (1.4)
(x,F(x)) =0

where F : Rn > Rn, K is a nonempty polyhedral convex cone in Rn, and

k2
K = {y g IP l(y.k) 2 0 for each k ¢ K}, can be written as

0 ¢ F(x) + awK(x)

Further information on nonlinear complementarity problems (often with K = F: , the non-
negative orthant) may be found in, e.g., [2), [4]), (7], [B). The Kuhn-Tucker necessary
conditions for mathematical programming [6]) form a special case of (1.4); e.g., for the
problem

minimize gyl

subject to gl(y) £ 0 ¢1.8)

h(y) = 0

where 6, g and h are differentiable functions from ‘n into R, Rq and Rt

respectively, one has the Kuhn-Tucker conditions

-
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8'(y) + ug'(y) + vh'(y) =0

A
o

qly)

n
o

h(y)

u

v
o
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(u,g(y)
and these can be written in the form (1.4) by taking n=m+ g +r, K = R « ®rY « R ’

x = (y,u,v) and

e’ (¥} + ug'(y) + vh'(y)l'r
F(x) = =g (y)
<hy)
There are also important applications of (1.3) to economic equilibrium problems [15], among
others. It is of interest to note that in most of the applications mentioned one finds
that C 1is a polyhedral convex set, and we shall see that particularly strong results can
be obtained for such problems.

It is also worth pointing out that problems of linear or quadratic programming lead
to linear generalized equations: for example, if P ¢ K" and Qc ®' are two polyhedral
convex cones, H and A are matrices of dimensions m x m and f x m respectively,

2

C & R" and a ¢« R , then we can consider the quadratic programming problem

minimize %(x,Hx) +{(c,x)
(1.6)
*
subject to a -~ Ax e Q , Xe P

*
where © is the dual cone of Q. The necessary optimality conditiong- for (1.6) are

(assuming without loss of generality that H is symmetric):

T * M
XH+c+ule?P a-Ax ¢ Q
XeP ue Q

(xTH+c¢uA,x)=0, (u, a-Ax) = 0 .

These can be formulated in a somewhat more transparent manner by writing them as
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a linear generalized equation which, if P and ¢ are taken to be lf‘ and lf
respectively (i.e., in the case of quadratic programming with equality constraints and
unconstrained variables) reduces to an ordinary linear equation. We shall see that linear
generalized egquations are basic to the analysis done here in much the same way as linear
equations are basic to the analysis of nonlinear equations.

The organization of this paper is as follows: in the next section we state and prove
the main result (Theorem 1) after defining a property used in the statement. We also dis-
cuss a way of simplifying (by restricting) one of the hypotheses. In Section 3 we examine
a class of multivalued functions frequently found in applications, and show that they have
one of the key properties needed in Theorem 1. Finally, in Section 4 we apply the results
of Sections 2 and 3 to linear generalized equations. Applications to nonlinear problems
will be the subject of Part II of this paper.

2. Main results. Before stating the main theorem, we require a preliminary defini-
tion dealing with a certain continuity property of multivalued functions (or multifunctions,
as we shall call them).

DEFINITION 1: Let X and Y be normed linear spaces. A multifunction F : X =+ Y

is upper Lipschitzian with modulus i, or U.L.()), at a point xo ¢ X with respect to

a set V ¢ X, if for each v ¢ V one has

F(v) c Flxg) + allv - x,[[By

where BY is the unit ball in Y. We say F 1is locally U.L.()) at X, i2 1¢ is

U.L.()) at X with respect to some neighborhood of x

0"
This property is close to the Lipschitz continuity for multifunctions defined by

Rockafellar [14, %3], except that we do not require F(xo) to be a singleton; in the pro-

blems we shall consider F(xo) will often be multivalued. Note that the distance from any

point of F(v) to the set F(xo) is bounded above by l||v - xo|‘, although the distance

ago
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from a point of F(xn) to F(v) may be large.

Before stating the main theorem, we shall try to motivate its hypotheses. Recall
that in the classical inverse-function theorem the key assumption is that the lineariza-
tion of the function being considered, about a point X, in the inverse image of 0O,
should be reqgular: specifically, that the inverse image of O under the linearized
function should be a singleton (in fact, the point X, itself). In our situation, since
we may be dealing with solution sets rather than points, we have to linearize about each
point in a set. The first assumption in the theorem is that there is a nonempty bounded
set X” (analogous to the point X in the classical case) such that the inverse image

of 0, wunder an appropriate kind of linearization performed at any point of X is

0’
XO itself together with, possibly, points outside some neighborhood of XO. There is
also an assumption of uniform upper Lipschitz continuity, which is automatically true in
the classical case. Finally, there is an assumption that the inverse image of any point
near 0, under the linearization previously mentioned, has a convex component in the
neighborhood of XO within which we are working. In the classical case this is equiv-
1lent to the first hypothesis, but not so here.

We shall show, below and in Part II, that many problems of practical interest
satisfy these hypotheses. In particular we show in Proposition 1 that the third assump-
tion can be replaced by an assumption of positive semidefiniteness which is often satis-
fied in applications.

In the following theorem, we use f2 to denote the partial Frechet derivative, with
respect to the second argument, of a function f(p,x) of two variables; B denotes the
unit ball in R with respect to the Euclidean norm, which is used throughout the re-

mainder of the paper.

THEOREM 1: Let P be a topological space, Q an open set in R" and T a

’ N3 ; 1 i .
maximal monotone operator from R into itself. Let f be a continuous function from
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P x 0 into R such that £, is continuous on P % 2. Let Py € Pi write Lf_ (x)

0
for f(po,x)) + fz(po,xo)(x-xo). Suppose that there are a nonempty, bounded convex set
x0 and constants A, Yy > 0 and n > 0 with xY : = XO + YB ¢ 2, such that for each
L XD:

: -1
£ X:- A (L +'T) “(0) =X 3
Y X 0
0
i) X 0 (Lf, +D" is U.L.O) at 0 with respect to nB;
0
P =) y
iii) For each vy ¢ nB, XY n (fo + T) "(y) is convex and nonempty.
]
Then there exist a number ¢ ¢ (0,y] and a neighborhood U(po) such that with
{x € X, +68Bl0c £(p,x) + T}, peU
I(p) & =
¢ pdu
one has:
1) © is upper semicontinuous from U to l{‘,
2) [(po) - XO:
and
3) For each ¢ > 0, for some neighborhood Uc(po) and for each p ¢ Ue’
¢ # L(p) < I(po) + () + e)ao(p)B '
where

ao(p) : = max(“ f(p,x) - f(po,x)H | X € xo} 5

Note that if P is actually a normed linear space and if f(p,x) is Lipschitzian

in p uniformly over x ¢ xo, then for some constant u and each p ¢ uc we have

Hp) < Itpg) + O+ oullp - pyllE

so that [ is locally U.L. [(X + €)u] at Py-




PROOF: Choose x_ ¢ X denote fo *> T by O(xq). Let 8 ¢ (0,n] with
: 0
= -1 | !
A0 <Y and let y ¢ 6B; then X, Q(xq) (y) XD + 2lyll B ¢ Xx_. Hypothesis (iii),
together with closure of O(XQ), implies that for each y ¢ 8B, X, O(xﬂ)-l(v‘ is non-
( Y \

empty, compact and convex. In particular, X is a compact convex set.

0
The basic idea of the proof is to approximate the inverse of the operator

f(p,x) + T(x) by the inverse of the operator

Q(m(x))(z) : = LE (z) + T(=z)

m(x)

f(po.ﬂ(x)) + fz(po,n(x))(z—xo) i) 5,

where n(x) is the closest point to x in XO,

just as one approximates the inverse
of a function in the classical inverse-function theorem by the inverse of its lineariza-
tion about some point. We then apply a fixed-point theorem; in proving the inverse-
function theorem one usually uses the contraction principle, but here we have to use

the Kakutani theorem. Observe that the "linearized" operator appearing here is of

the type we discussed above in considering linear generalized equations; this illus-
trates our comment that these operators play a role in the analysis of generalized equa-
tions analogous to that of linear operators in classical analysis.

Of course, during this approximation it will be necessary to be careful that we

work with the correct component of the inverse image (i.e., that lying in Xy), and

this adds a certain amount of complexity to the notation.

o
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- ; n
Define, for two subsets A and C of R’ and a point x ¢ R ,

d(x,c) : = inf{|| x - ¢|| |e ¢ ¢} and d(A,C] = sup{d[a,C]|a ¢ A}, where the supremum
and infimum of ¢ are defined to be -» and +» respectively. Denote by 7 the pro-

n : : .
jection from R onto X ;7 is well known to be nonexpansive, hence a fortiori con-

o’
tinuous.
Using continuity and compactness, one can show that the function

8(8) : = max{|| £,(pyex) - fz(po.w(x))H |x ¢ x, + 6B}

is well defined for small &, and is continuous at O with A(0) = 0. Thus, we can
choose a 4 ¢« (0,y] such that Ag(48) < % and 68 (8) < %6. It is not difficult to show
that for this fixed § the function

ué(P) : = max{|| £(p,x) - f(po,x)H |x € xé}

is well defined for all p ¢ P, and is continuous at p,  with ad(po) = 0. Thus, we

0
can choose a neighborhood U(pO) such that for each p ¢ U, Gé(p) < %9 and
las(p) s %—6. Now choose any p ¢ U, and define a multifunction Fp from x6 into
B by
F(x) : =X noln(x) tLE (x) = £(p,x))
p 1 Y m{x) Py
If x is any point of x6' we have
[Lf (0 X - £ || g £ - £ || + [[fpgx0 - Lf"(x)(x)H : (2.1)
Now define (for this fixed x) a function of one real variable 1 by
gl(r) ¢ = f(po,nt + {1~ 7)alx)) = Lf"(x)(rx + (1 - 1)n(x))
We find that
[£(pgex) = Lfﬂ(x)(x)H = |lg(v) = g(0)|] < sup{|lg'()|||0 < 1 <1}
However, for 1t ¢ [(0,1],
_a-
B At - - w—— - -
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(pu.“(x))lix - ®(x})] .,

g'(t) = [‘2(},(),x_) - f2

where x_ = Tx + (1 = T)7(x).

m(x ) = n(x), so
Il | =1 T || <
1;f2(p0.xt) fz(po,“(x))h Hfz(po.xx) fz(po,“(xﬂ))u g
since xT € x!. Hence

ey - 1 )] < 8O} x = 7(x) ]

£ (x)
as |lf(p.x) - f(po,x)H < a.(p), we have from (2.1) and (2.2)

Lt @ = £l 2 age) + 8l x - 7]

Hence, by our previous remarks Fp(x) is a nonemptv compact convex

We have by properties of the projection that

g(6) .

y) + Tiy)}

Also, using (i), (ii) and (2.3) we have for x ¢ Xeo
dlP (x),%.1 = a{x_ n Qrix)) "2 oe (x) - £(p,x) 1, X 0 o(n(x)) 1(0)]
- s A (%) PO
< X - |
S llue o, 0 - £ |
1 1

€ X AR (8 | -7 HeSfg =8n §
< Jné(p) + AB( )ﬂ X 1(x),l =5 + 25 ¥

so F carries X, into itself. We have

l‘ )
graph rp = {(x,y)|x ¢ Xgo ¥ € Xgo LE (%) = £(p,X) € LE

{(x,y) 10

Using the continuity of f, f and 7w,

27

maximal monotonicity), one can show without difficulty that graph

X, % Xﬁ. We can thus apply the Kakutani fixed-point theorem [5,9)
that there is some x ¢ X, with x_ ¢ F (x ); that is,
p P P P
- £ Lf + T(x '
Lfn(x )(xp) (p,xp) € " ix )(xp) ( p)
p P
als
g g

f(p,x) + fz(po.ﬂ(x))(y-x) + Ty} o (X,

together with the fact that T

X,)

is close

to conclude

is closed

in

(2.4)

(by




SO

0 ¢ flp,x ) + T(x )
$ p
and thus xp « - (p), which is therefore nonempty. We have
graph © = {(p,x) ¢ U x X6|0 e f(p,x) +# T(x)}

this 1is closed in U x X_ by joint continuity of f and closure of T. However, the

8
range of 1s contained in the compact set x6; thus by [9, Lemma 4.4] [ is actually
upper semicontinuous from U to XG. If Xq € xo then by (i) one has
0 ¢ footxo) + T(xO) = f(po,xo) + T(xo), S0 x, € x(po) and thus Z(po) > xo. On the
other hand, if x « ‘(po) then x ¢ x6 and 0 ¢ f(po,x) + T(x); therefore
- . +
Lf"(x)(x) f(po x) € Lfﬂ(x)(x) Tix)

so that x ¢ Fp (x). As x ¢ XG' we have from (2.4) with p = Py that
0
‘

(x) = £pyox) || -

alx, X ) < lepO(x).xol < XHLf"(x)

But from (2.3) with p = Bgr we find that

HLf“( (x) - £(py,0llg B8(8)|[x - n(x)|= B(8)YAlx,X)

x)
Thus

d[x,xol < XB(G)d[xlxol < %d[x,xol "

implying that x ¢ xo since xo is closed. Thus we actually have S(po) = xo.

Now take any € » 0; find 6: ¢ (0,8) such that for o ¢ IO.G(] one has

¢/() + 2). One can show that the function

N -

ABlo) <

v(p) = max{ ||£,(p,x) ~ fz(po.xﬂ||x € X, + 6B} is well defined on P and is continuous

at p,i choose a neighborhood U (po) c U so that if p ¢ Uc we have

Nfrs ™

Z{p) c Y(po) + 6£B and )y(p) < e/(A + €). Now choose any p ¢ Uc and any x ¢ ! (p).

PRS-
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Using (2.4) and the fact that x ¢ Fp(x), we have

alx,1 ()] £ AR () X))

A

X||Lf“(x)(x) - f(p,x) |l

Vh) - hen |l + e |

A

+

Allf(po,x) - Lf"(x)(x)|| ’ (2.5)

where h(x) := f(p,x) =~ f(po,x). 1f we define, as before, X, 1= Tx o+ (1L - t)n(x), we
have

Iheo ~ neran || < llx - mal| suy(llh'(x1)1|!0 <1 <1}

But h (xT) = fz(p.xT) - fz(po.xt), sO

[Ihoo = heran || < vy [l x = 70 ||

Thus, using (2.2), (2.5) and the fact that [lh(n(x)) || < a (p), we have

dix, 2 (pd1 £ A v |l x = w60l + dap) + 2a8(5)) [Ix - n(x) ||
< le/O + ) lx = rooll + rag(p) .
But |lx - nx) || = dlx,:(po)], so if ) > 0 we obtain

D/ + e)ldlx,(py)] < ray(p)
and thus

dlx,Z(po)l L E)Go(p) . (2.6)

On the other hand, if ) = 0 then (2.5) implies that dlx.{(po)) = 0, in which case
(2.6) holds trivially. 1In either case, therefore,

L(p) < Llpy) + (A + e)ag(P)B ,

which completes the proof.
Verification cf the hypotheses of this theorem in a particular case may be difficult;

this is particularly true of (ii) and (iii). It is therefore desirable to look for

«11=
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classes of problems for which this verification may be easier. In the next section we
exhibit such a class for hypothesis (ii); we do so for (iii) in the following proposi-

tion.

PROPOSITION 1: In Theorem 1, the hypothesis (iii) may be replaced by

671 fz(po.xo) is positive semidefinite.

PROOF: We shall show that (iii)', together with the other hypotheses of Theorem 1,

implies (iii). Choose any x_ ¢ X_ :

0 o under (iii)*' the function fo will be a maximal

0

monotone operator. As T 1is also maximal monotone and as dom fo (the effective
0

domain of fo ) is all of ](‘, we have from [1 , Cor. 2.7] that Q(xo) is maximal
0
1

monotone; hence so is Q(xo)- The set Q(xo)-l(O) is then convex, so that (i) implies

that Q(xo)_l(O) = X,. It follows that for vy ¢ nB, XY n Q(xo)-l(y) c XO + iyl 8
(by (ii)). Now let a ¢ (0O,n] with JXa < y. If y e aB, the convexity of O(xo)-l(y)
implies that xY n Q(xo)_l(y) = Q(xo)-l(y), so Q(xo)-1 is locally U.L.(1) at Q.
But this, together with the boundedness of Q(xo)—1(0), shows that Q(xo)-l is 1locally
bounded at 0; in fact, it must be locally bounded at every point of int aB, since the
image of some ball around such a point will be contained in the image of aB, which in
T Xo + AaB. But then from [12, Th. 1] we have

that int aB cannot contain any boundary point of dom Q(xb)-l; however. as int aB

turn is contained in the bounded set X

meets dom Q(!b)-l (at 0) and is connected we finally conclude that
int 4B ¢ int dom Q(ﬁj)-l. Thus, for each y with ||y|| < a the set Q(xo)_l(y) is
nonempty, convex and contained in an S xy. This proves Proposition 1 (replacing

n by any positive number smaller than a).

The hypothesis (iii)' is certainly simpler ¢aan is (iii); however, (iii) covers a
more gencral class of problems. For example, ccvsider the linear generalized equation

0 € -ax + B + 30(_1 ll(x) ’

-12-
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where u > 0. This does not satisfy (iii)'; however, if |[f| *# o then each of its solu-
tions (one if l§¢ b a; Ehres ¥ :r < a) can be analyzed under (111). 1If £l = o then
the solution at - sgn B can be so analyzed, but the solution at sgn § cannot (indeed,

the conclusions of Theorem 1 fail for that solution).

3. Polyhedral multifunctions. 1In the last section, we exhibited a class of pro-

blems for which hypothesis (iii) of Theorem 1 always held. Here we do somewhat the

same thing for hypothesis (ii): we show that for a class of multifunctions important

in applications to optimization and equilibrium problems, local upper Lipschitz con-
tinuity holds at each point of the range space. The problem of verifying hypothesis
(ii), in the case of such functions, then reduces to that of showing that the Lipschitz
constants are uniformly bounded and that the continuity holds on a fixed neighborhood
for each function in the family considered. For the application given in Section 4 this
is trivial; some cases in which it is non-trivial are treated in Part II.

DEFINITION 2: A multifunction Q : Bn > Rm is polyhedral if its graph is the
union of a finite (possibly empty) collection of polyhedral convex sets (called compo-
nents) .

Here we use "polyhedral convex set" as in (13, §19].

It is clear that a polyhedral multifunction is always closed, and that its inverse
is likewise polyhedral. Further, one can show without difficulty that the class of
polyhedral multifunctions is closed under scalar multiplication, (finite) addition, and
(finite) composition. The following proposition shows that they have good properties
also with respect to upper Lipschitz continuity. For brevity, we omit the proofs of
this proposition and the next; they may be found in [10].

PROPOSITION 2: Let F be a polyhedral multifunction from R into K. Then

there exists a constant ) such that F is locally U.L.(X) at each X, € %
It is worth pointing out that 1} depends only on F and not on x although

o'

of course the size of the neighborhood of x_ within which the continuity holds will

0

-13-
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in general depend on X

The importance of polyhedral multifunctions for applications is illustrated by
the following fact, in the statement of which we use the concepts of subdifferential
and of a polyhedral convex function (one whose epigrach is a polyhedral convex set),
which are discussed further in [13].

PROPOSITION 3: Let f be a polyhedral convex function from R into (==, +=].

Then the subdifferential 5f is & polyhedral multifunction.

It follows from this proposition that subdifferentials of polyhedral convex
functions display the upper Lipschitz continuity required in Theorem 1. In view of our
earlier remarks about polyhedral multifunctions, this behavior is not lost if we combine
these subdifferentials in various ways with other po'yhedral multifunctions. For

example, let C be a nonempty polyhedral convex set in Rn and let wc 1 Rn + (==, o]

be its indicator function, defined by

(0: x ¢ C
wc(x) 1=
+o, X * c

It is readily verified that ¢ is a polyhedral convex function. Now, if A is a

c
linear transformation from R into itself and a ¢ ]{\, then the operator

Ax + a + awc(x) and its inverse are, by Propositions 2 and 3, everywhere locally upper
Lipschitzian. Hence, generalized linear equations have good continuity properties with
respect to perturbations of the right-hand side; we shall exploit this fact in the next
section.

This discussion also shows that, if the operator T in Theorem 1 is polyhedral,

then the linearized operators fo + T have at least some of the continuity properties
0

required in hypothesis (ii) of that theorem; it is still necessary to prove uniformity,
but this is trivial if xO is a singleton, while in general it can often be done by

using the structure of the problem (e.g., in nonlinear programming: see Part II of this

paper) .

-14-

DN — i — - .o — i — — .
'NW#
-



4. An application: stability of a linear generalized equation. To illustrate

an application of Theorem 1, we specialize it to analyze the behavior of the solution

set of the linear generalized equation
0e¢ Ax + a + awc(x) ’ (4.1)

where A 1is an n x n matrix, a ¢ R" , and C 1is a nonempty polyhedral convex set

in ®'. Such problems include, as special cases, the problems of linear and quadratic
programming and the linear complementarity problem. We shall characterize stability of
the solution set of (4.1) when the matrix A is positive semidefinite (but not necessari-
ly symmetric); a more general (but more complicated) result could be obtained by dropping

the assumption of positive semidefiniteness but assuming hypothesis (iii) of Theorem 1.

THEOREM 2: Let A be a positive semidefinite n x n matrix, C be a nonempty

polyhedral convex set in R’ and a ¢ R . Then the following are equivalent:

a) The solution set of (4.1) is nonempty and bounded.

b) There exists € > 0 such that for each n x n matrix A' and each a' ¢ R

with

e' := max{ ||a'-a]l , |la'-al| } < ¢ (4.2)

.
the set
S(A',a') := {x][0 € A'x + a' + 3. (x)}

is nonempty.

Further, suppose these conditions hold; let y be a bound on S(A,a), and A be
a local upper Lipschitz constant for [A(:) + a + awc(-)l"l at 0 (which exists by

the results of Section 3). Then for any open bounded set Y containing S(A,a) there

is some ¢ > 0 such that for each A', a' with max {||a'~a]l , |la'-all} < € we

have

6 2 S(A',a') n ¥ c S(A,a) + Ae' (1=ae") " F(1ew)B . (4.3)

-15-
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Finally, if (A',a') are restricted to values for which S(A',a') is known

to be connected (in particular, if A' 1is restricted to be positive semidefinite), then

¥ can be replaced by R .

PROOF (b = a): If (b) holds then in particular S(A,a') 1is nonempty for all a
in some ball about a. This means that O belongs to the interior of the range of the
operator A(-) + a + awc(-), which is maximal monotone by [1, Cor. 2.7]). Accordingly,
the inverse of this operator is locally bounded at O (1, Prop. 2.9] and so in parti-
cular S(A,a) is bounded.

(a = b): We apply Theorem 1, taking P to be the normed linear space of pairs
(A',a') of nxn matrices and points of r" , with the distance from (A',a') to
(A",a") given by max{|l A'-a"|| , |la'-a"]| }; we take Py:=(A,a), T:=3y., and
f((A',a'),x] := A'x + a'. The set X is then S(A,a); we let Q be any open bounded

0

set containing xO' and since fo (x) = Ax + a for any Xq it is clear that the
0
hypotheses are satisfied (note that Proposition 1 implies that (iii) holds). We then

find that for some § > O, eo >0 and a1l (A'.8') with e" < EO’ we have
S(A',a') n [S(A,a) + 6B) nonempty, which proves (b).
Now choose V¥; without loss of generality we can suppose that ( was taken to be

this Y. As ¥ is bounded, we can find ¢

1€ (O,col with Je, < 1 and such that for

1

each x e ¥, e (1 + [[ x{[) £ n, where n is the parameter appearing in Theorem 1. Now

pick any (A',a') with ¢' < €1 by the above discussion S(A',a') n ¥ 1is nonempty,

and we take x' to be any point of that intersection. We know that
G ¢ A'x* *a' + awc(x') '
which is equivalent to
x' ¢ [A(:) +a+ ch(o)]-ll(A-A')x' + (a-a")] .

But since x' ¢ ¥,

-16~
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[l (A=A x*' + (a-a") || < max{ ||A-a*ll , |la-a'|l 11 + [[x']])
< sl(l + ilx'{) £En

and so by upper Lipschitz continuity,
dlx', s(a,a)] < 2 [[(A-A")x' + (a-a")|
Now let Xy be the closest point to x' in S(A,a); then
[l (a-a")x* + (a-a") || < | (A-a')x, + (a-a") || + H(A-A')!x'—xf'),
£ gVl +u) # s']!x'-xOH
Accordingly, as [Ix'-xOH = d[x',S(A,a)] we have

dix',s(A,a)] < Ae'(1 + u) + re'd(x',S(A,a)] ,

yielding

alx',s@A,a)] < e’ = 2T+ .

Since x' was arbitrary in S(A',a') n ¥, we have (4.3).

Finally, we observe that for all small ', S(A',a') is contained in

S(A,a) + 6B which is contained in ¥. If S(A',a') also met the complement of ¥
then it would be disconnected; thus if S(A',a') is connected it must lie entirely in
¥, so that we may replace Y by R in (4.3). 1In particular, if A' 1is positive

semidefinite then A'(.) + a' + awct.) is maximal monotone, so that S(A',a') 1is con-

vex as the inverse image of 0O under this operator. This completes the proof.

F One might wonder, since the boundedness of Y is used at only one place in the
proof, whether a refinement of the technique would permit replacement of Y by Rn
in all cases. The following example shows that this cannot be done even for n = 1:
take C = R+ , A= (0] and a = (1], so that the problem is
0 ¢ [O)x + [1] + We (x)
+
: whose solution set is S([0),[1]) = {0). However, it is readily checked that for any
§
3
]
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- 1 2
€ >0, S((-¢],(1]) = {0, ¢ "}; thus we cannot take ¥ = R in this case.

Theorem 2 provides, in particular, a complete stability theory for convex quadra-
tic programming (including linear programming) and for linear complementarity problems
with positive semidefinite matrices; this extends earlier work of Daniel (3] on
strictly convex quadratic programming, and of the author [11] on linear programming.
Stability results for more general nonlinear programming problems are developed in
Part II of this paper.

It might be worth pointing out that the strong form of Theorem 2 (i.e., with A'
restricted to be positive semidefinite) can sometimes be shown to hold because of the

form of the problem. For example, consider the quadratic programming problem

minimize %(x,Qx) + (q,x) + (p,y}

(4.4)
subject to Bx + Dy h a
(we could also have added equality constraints, constrained variables, etc. but have
omitted these for simplicity). Here Q is mxm, B is r xm and D is r x s.
The formulation of (4.4) as a generalized equation is (taking O to be symmetric)
0 0 BT x q
b 1
0 « 0 0 D Y + P + 3vc(x,y,u) . (4.5)
l-B -D 0 u dJ

where C = Rm x B’ x R:. The matrix shown in (4.5) is then the matrix A of

Theorem 2; it is positive semidefinite if and only if Q is positive semidefinite
(i.e., if and only if the problem (4.4) is convex). Now, if ( is actually positive
definite then for all small perturbations of the data of (4.4) (i.e., of Q,q,p,B,D, and
d) the matrix in (4.5) will remain positive semidefinite and the strong form of
Theorem 2 will hold. The point here is that the structure of the problem prevents the
type of perturbation which could destroy the positive semidefiniteness of A. This

comment, of course, applies in particular to all linear programming problems [11].
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